Microservices Best Practices¶
Overview¶
This guide covers comprehensive best practices and patterns for building, deploying, and maintaining microservices architecture.
Prerequisites¶
- Basic understanding of microservices architecture
- Knowledge of distributed systems
- Familiarity with cloud platforms
- Understanding of DevOps practices
Learning Objectives¶
- Understand microservices best practices
- Learn design patterns
- Master operational practices
- Implement security measures
- Handle scalability and resilience
Table of Contents¶
- Design Principles
- Service Organization
- Data Management
- Communication Patterns
- Operational Excellence
Design Principles¶
Single Responsibility¶
Each service should have a single responsibility and should be focused on a specific business capability.
@Service
public class OrderService {
private final OrderRepository orderRepository;
private final PaymentClient paymentClient;
// Focus only on order-related operations
public Order createOrder(OrderRequest request) {
// Order creation logic
}
public Order updateOrder(String orderId, OrderUpdateRequest request) {
// Order update logic
}
}
API First Design¶
Design APIs before implementation using OpenAPI/Swagger specifications.
openapi: 3.0.0
info:
title: Order Service API
version: 1.0.0
paths:
/orders:
post:
summary: Create a new order
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OrderRequest'
responses:
'201':
description: Order created
content:
application/json:
schema:
$ref: '#/components/schemas/Order'
Service Organization¶
Project Structure¶
order-service/
├── src/
│ ├── main/
│ │ ├── java/
│ │ │ └── com/company/order/
│ │ │ ├── config/
│ │ │ ├── controller/
│ │ │ ├── domain/
│ │ │ ├── repository/
│ │ │ ├── service/
│ │ │ └── client/
│ │ └── resources/
│ └── test/
├── Dockerfile
├── pom.xml
└── README.md
Service Registry¶
@SpringBootApplication
@EnableDiscoveryClient
public class OrderServiceApplication {
public static void main(String[] args) {
SpringApplication.run(OrderServiceApplication.class, args);
}
}
Data Management¶
Database Per Service¶
Each service should have its own database to ensure loose coupling.
spring:
datasource:
url: jdbc:postgresql://localhost:5432/orderdb
username: ${DB_USERNAME}
password: ${DB_PASSWORD}
jpa:
hibernate:
ddl-auto: none
Event Sourcing¶
@Service
public class OrderEventService {
private final EventStore eventStore;
public void createOrder(OrderCreatedEvent event) {
eventStore.save(event);
// Additional processing
}
public Order reconstructOrder(String orderId) {
List<Event> events = eventStore.getEvents(orderId);
return Order.replay(events);
}
}
Communication Patterns¶
Asynchronous Communication¶
@Service
public class OrderProcessor {
private final KafkaTemplate<String, OrderEvent> kafkaTemplate;
public void processOrder(Order order) {
OrderEvent event = new OrderEvent(order);
kafkaTemplate.send("order-events", event);
}
}
Circuit Breaker¶
@Service
public class PaymentService {
@CircuitBreaker(name = "payment", fallbackMethod = "fallbackPayment")
public Payment processPayment(PaymentRequest request) {
return paymentClient.processPayment(request);
}
public Payment fallbackPayment(PaymentRequest request, Exception ex) {
return new Payment(PaymentStatus.PENDING);
}
}
Operational Excellence¶
Health Checks¶
@Component
public class OrderServiceHealthIndicator implements HealthIndicator {
private final OrderRepository orderRepository;
@Override
public Health health() {
try {
orderRepository.count();
return Health.up().build();
} catch (Exception ex) {
return Health.down()
.withException(ex)
.build();
}
}
}
Monitoring and Metrics¶
@Component
public class OrderMetrics {
private final MeterRegistry registry;
public void recordOrderProcessingTime(long timeInMs) {
registry.timer("order.processing.time")
.record(timeInMs, TimeUnit.MILLISECONDS);
}
public void incrementOrderCounter() {
registry.counter("order.created").increment();
}
}
Best Practices Summary¶
1. Service Design¶
- Keep services small and focused
- Design for failure
- Use API-first approach
- Implement proper validation
- Use proper error handling
2. Data Management¶
- Use database per service
- Implement eventual consistency
- Handle distributed transactions
- Use proper caching strategies
- Implement data backup and recovery
3. Security¶
- Implement authentication and authorization
- Use HTTPS everywhere
- Secure sensitive data
- Implement rate limiting
- Regular security audits
4. DevOps¶
- Automate deployment process
- Implement CI/CD
- Use container orchestration
- Monitor service health
- Implement proper logging
5. Testing¶
- Write comprehensive tests
- Implement contract testing
- Perform load testing
- Test failure scenarios
- Automate testing process
Implementation Examples¶
Complete Service Implementation¶
@Service
@Slf4j
public class OrderServiceImpl implements OrderService {
private final OrderRepository orderRepository;
private final PaymentClient paymentClient;
private final OrderMetrics metrics;
@Transactional
public Order createOrder(OrderRequest request) {
long startTime = System.currentTimeMillis();
try {
// Validate request
validateRequest(request);
// Create order
Order order = new Order(request);
order = orderRepository.save(order);
// Process payment
Payment payment = processPayment(order);
order.setPaymentStatus(payment.getStatus());
// Update metrics
metrics.incrementOrderCounter();
return order;
} finally {
metrics.recordOrderProcessingTime(
System.currentTimeMillis() - startTime);
}
}
@CircuitBreaker(name = "payment")
private Payment processPayment(Order order) {
return paymentClient.processPayment(
new PaymentRequest(order));
}
}
Configuration Management¶
spring:
application:
name: order-service
cloud:
config:
uri: http://config-server:8888
fail-fast: true
datasource:
url: jdbc:postgresql://${DB_HOST}:${DB_PORT}/${DB_NAME}
username: ${DB_USERNAME}
password: ${DB_PASSWORD}
kafka:
bootstrap-servers: ${KAFKA_SERVERS}
producer:
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.springframework.kafka.support.serializer.JsonSerializer
management:
endpoints:
web:
exposure:
include: health,metrics,prometheus
metrics:
tags:
application: ${spring.application.name}
resilience4j:
circuitbreaker:
instances:
payment:
slidingWindowSize: 10
failureRateThreshold: 50
waitDurationInOpenState: 5000
Common Pitfalls to Avoid¶
- Too fine-grained services
- Synchronous communication overuse
- Shared databases
- Lack of monitoring
- Poor error handling
- Insufficient testing
- Missing security measures
- Inadequate documentation
Resources for Further Learning¶
Practice Exercises¶
- Design a microservice architecture
- Implement service discovery
- Set up monitoring and alerting
- Implement circuit breakers
- Create deployment pipelines