Tree Traversal Algorithms¶
Problem Statement¶
Implement various tree traversal algorithms including in-order, pre-order, post-order, and level-order traversals for binary trees.
Examples¶
Example 1: Binary Tree¶
1
/ \
2 3
/ \
4 5
In-order (Left, Root, Right): 4 2 5 1 3
Pre-order (Root, Left, Right): 1 2 4 5 3
Post-order (Left, Right, Root): 4 5 2 3 1
Level-order: 1 2 3 4 5
Basic Implementation¶
1. Tree Node Structure¶
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int val) {
this.val = val;
}
}
2. In-order Traversal¶
public class TreeTraversal {
// Recursive approach
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
inorderHelper(root, result);
return result;
}
private void inorderHelper(TreeNode node, List<Integer> result) {
if (node == null) return;
inorderHelper(node.left, result);
result.add(node.val);
inorderHelper(node.right, result);
}
// Iterative approach using stack
public List<Integer> inorderTraversalIterative(TreeNode root) {
List<Integer> result = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode current = root;
while (current != null || !stack.isEmpty()) {
while (current != null) {
stack.push(current);
current = current.left;
}
current = stack.pop();
result.add(current.val);
current = current.right;
}
return result;
}
}
3. Pre-order Traversal¶
public class TreeTraversal {
// Recursive approach
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
preorderHelper(root, result);
return result;
}
private void preorderHelper(TreeNode node, List<Integer> result) {
if (node == null) return;
result.add(node.val);
preorderHelper(node.left, result);
preorderHelper(node.right, result);
}
// Iterative approach
public List<Integer> preorderTraversalIterative(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode current = stack.pop();
result.add(current.val);
if (current.right != null) stack.push(current.right);
if (current.left != null) stack.push(current.left);
}
return result;
}
}
4. Post-order Traversal¶
public class TreeTraversal {
// Recursive approach
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
postorderHelper(root, result);
return result;
}
private void postorderHelper(TreeNode node, List<Integer> result) {
if (node == null) return;
postorderHelper(node.left, result);
postorderHelper(node.right, result);
result.add(node.val);
}
// Iterative approach
public List<Integer> postorderTraversalIterative(TreeNode root) {
LinkedList<Integer> result = new LinkedList<>();
if (root == null) return result;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode current = stack.pop();
result.addFirst(current.val);
if (current.left != null) stack.push(current.left);
if (current.right != null) stack.push(current.right);
}
return result;
}
}
5. Level-order Traversal¶
public class TreeTraversal {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int levelSize = queue.size();
List<Integer> currentLevel = new ArrayList<>();
for (int i = 0; i < levelSize; i++) {
TreeNode current = queue.poll();
currentLevel.add(current.val);
if (current.left != null) queue.offer(current.left);
if (current.right != null) queue.offer(current.right);
}
result.add(currentLevel);
}
return result;
}
}
Complete Solution with Tests¶
public class TreeTraversalTest {
public static void main(String[] args) {
TreeTraversal solution = new TreeTraversal();
// Create test tree
TreeNode root = new TreeNode(1);
root.left = new TreeNode(2);
root.right = new TreeNode(3);
root.left.left = new TreeNode(4);
root.left.right = new TreeNode(5);
// Test all traversals
System.out.println("In-order Recursive: " +
solution.inorderTraversal(root));
System.out.println("In-order Iterative: " +
solution.inorderTraversalIterative(root));
System.out.println("Pre-order Recursive: " +
solution.preorderTraversal(root));
System.out.println("Pre-order Iterative: " +
solution.preorderTraversalIterative(root));
System.out.println("Post-order Recursive: " +
solution.postorderTraversal(root));
System.out.println("Post-order Iterative: " +
solution.postorderTraversalIterative(root));
System.out.println("Level-order: " +
solution.levelOrder(root));
}
}
Variations¶
1. Zigzag Level Order Traversal¶
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
boolean isLeftToRight = true;
while (!queue.isEmpty()) {
int levelSize = queue.size();
LinkedList<Integer> currentLevel = new LinkedList<>();
for (int i = 0; i < levelSize; i++) {
TreeNode current = queue.poll();
if (isLeftToRight) {
currentLevel.addLast(current.val);
} else {
currentLevel.addFirst(current.val);
}
if (current.left != null) queue.offer(current.left);
if (current.right != null) queue.offer(current.right);
}
result.add(currentLevel);
isLeftToRight = !isLeftToRight;
}
return result;
}
2. Vertical Order Traversal¶
public List<List<Integer>> verticalOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) return result;
Map<Integer, List<Integer>> columnTable = new TreeMap<>();
Queue<Pair<TreeNode, Integer>> queue = new LinkedList<>();
queue.offer(new Pair<>(root, 0));
while (!queue.isEmpty()) {
Pair<TreeNode, Integer> p = queue.poll();
TreeNode node = p.getKey();
int column = p.getValue();
columnTable.computeIfAbsent(column, k -> new ArrayList<>())
.add(node.val);
if (node.left != null) {
queue.offer(new Pair<>(node.left, column - 1));
}
if (node.right != null) {
queue.offer(new Pair<>(node.right, column + 1));
}
}
result.addAll(columnTable.values());
return result;
}
Common Pitfalls and Tips¶
- Null Checks: Always handle null nodes properly
- Stack Space: Be aware of recursion depth for large trees
- Queue Memory: Consider memory usage in level-order traversal
- Order Preservation: Maintain correct order in iterative approaches
- Edge Cases: Handle single node and empty trees
Interview Tips¶
- Start with recursive solution for simplicity
- Explain space-time trade-offs
- Consider iterative solutions for better space complexity
- Draw the tree and walk through the algorithm
- Discuss real-world applications
Follow-up Questions¶
- How would you handle very deep trees?
- Can you implement Morris Traversal?
- How to handle threaded binary trees?
- What about N-ary trees?
- How to parallelize tree traversal?
Real-world Applications¶
- File system traversal
- Expression evaluation
- HTML/XML parsing
- Network routing
- Game tree evaluation
Testing Edge Cases¶
// Test empty tree
assert solution.inorderTraversal(null).isEmpty();
// Test single node
TreeNode singleNode = new TreeNode(1);
assert solution.inorderTraversal(singleNode).size() == 1;
// Test left-skewed tree
TreeNode leftSkewed = new TreeNode(1);
leftSkewed.left = new TreeNode(2);
leftSkewed.left.left = new TreeNode(3);
// Test right-skewed tree
TreeNode rightSkewed = new TreeNode(1);
rightSkewed.right = new TreeNode(2);
rightSkewed.right.right = new TreeNode(3);
// Test complete binary tree
TreeNode complete = new TreeNode(1);
complete.left = new TreeNode(2);
complete.right = new TreeNode(3);
complete.left.left = new TreeNode(4);
complete.left.right = new TreeNode(5);
complete.right.left = new TreeNode(6);
complete.right.right = new TreeNode(7);
Performance Comparison¶
Traversal | Time Complexity | Space Complexity (Recursive) | Space Complexity (Iterative) |
---|---|---|---|
In-order | O(n) | O(h) | O(h) |
Pre-order | O(n) | O(h) | O(h) |
Post-order | O(n) | O(h) | O(h) |
Level-order | O(n) | O(w) | O(w) |
where n = number of nodes, h = height of tree, w = maximum width of tree
Optimization Tips¶
- Use iterative approach for better space complexity
- Consider Morris Traversal for O(1) space
- Use appropriate data structures (Stack vs Queue)
- Avoid unnecessary object creation
- Consider thread-safe implementations for concurrent access